РОССИЙСКО-АРМЯНСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

Составлена в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по указанному направлению 30.05.01 Медицинская биохимия и Положением РАУ «О порядке разработки и утверждения учебных программ».

Институт: Институт биомедицины и фармации

Кафедра: Медицинской биохимии и биотехнологии

Направление: 30.05.01 Медицинская биохимия

Автор: Оганесян Ашхен Арташесовна

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

Дисциплина: Молекулярная и медицинская генетика

1. Аннотация

Дисциплина «Молекулярная генетика» является важной составляющей современной биологии, т.к. она исследует и описывает жизнь на молекулярном уровне, изучает закономерности функционирования основные строения И живой материи, систематизирует современные представления о структурно-функциональной организации генетического аппарата клеток и механизмах реализации генетической информации, процессов, обуславливающих сохранение экспрессии генов, изменчивость генетического материала.

Студенты в процессе изучения данной дисциплины знакомятся с различными технологиями, позволяющими решать насущные потребности медицины и сельского хозяйства, такими как конструирование рекомбинантных ДНК и векторных молекул, создание штаммов-продуцентов биологически активных веществ, получение и анализ клонотек геномов.

2. Требования к исходным уровням знаний и умений студентов:

Дисциплина базируется на знаниях, приобретенных студентами при изучении теоретических и методических основ фундаментальных наук (биологии, математики, физики, химии), медико-биологических наук (морфологии, физиологии, микробиологии, вирусологии, иммунологии, фармакологии, генетики, биофизики и биохимии). Для усвоения курса необходимо знать основы теории молекулярной биологии, молекулярной генетики, биотехнологии.

3. Учебная программа

3.1 Цель и задачи дисциплины

Цель освоения дисциплины:

1. подготовка компетентного специалиста, способного к изучению явлений наследственности и изменчивости на молекулярном уровне организации живого с использованием современных методов генетического анализа.

- 1. Формирование профессиональных компетенций:
- готовностью к научно-исследовательской деятельности по сбору и подготовке научных материалов, квалифицированной постановке экспериментов, проведению полевых исследований, обработке результатов полевых и экспериментальных исследований;

- исследования генетического материала на молекулярном, клеточном, организменном и популяционном уровнях в целях использования закономерностей наследственности и изменчивости в селекции, биотехнологии и медицине.

Задачи дисциплины:

- 1. Изложить основные принципы о направлениях развития геномики, транскриптомики, протеомики, метаболомики, биоинформатики, рассмотрние существующие инструментарий и подходы, используемые при конструировании различных векторов, клонировании генов и их экспрессии в различных типах клеток;
- 2. подробно рассматривать перенос генов в клетки и организмы, получения и использование трансгенных организмов;
- 3. проводить лекционные и практические занятия с целью углубленного изучения и приобретения навыков получения, трансформированных организмов.

4. Требования к уровню освоения содержания дисциплины

В результате освоения дисциплины студент:

1. должен знать:

особенности живых систем, уровни их организации;

- молекулярные механизмы сохранения, воспроизведения и реализации генетической информации;
- фундаментальные принципы регуляции основных молекулярно-генетических процессов: репликации, транскрипции и трансляции;
- молекулярные основы наследственно закрепляемой изменчивости и эволюция геномов и организмов;
- специфичность структуры основных макромолекул (нуклеиновых кислот и белков), их функционирование и взаимосвязь, взаимодействие с клеточными компонентами;
- межмолекулярные взаимодействия и их роль в функционировании живых систем;
- структуру геномов про- и эукариот, вирусов, фагов;
- тонкую структуру гена и методы ее изучения;
- принципы и стратегии генетической инженерии, возможности ее использования в молекулярной биологии;

- экогенетические аспекты мутагенеза, мутагенные эффекты природных и антропогенных факторов;
- молекулярные основы регуляции клеточного цикла, появления разнокачественных клеток в ходе индивидуального развития;
- молекулярные основы клеточного апоптоза..

2. должен уметь:

- использовать экспериментальные модели на молекулярном, клеточном и субклеточном уровне;
- самостоятельно искать информацию в области молекулярной биологии, ее анализа и использования в процессе преподавания общей биологии и естествознания в школе.

3. должен владеть

- навыками лабораторной работы с биологическими объектами на молекулярном уровне;
- навыками решения ситуационных генетических задач;
- навыками анализа и демонстрация полученных данных;
- представлениями о генетически детерминируемых заболеваниях и молекулярных методах их диагностики и лечения;
- представленими о молекулярных механизмах иммунитета и возможностях его целенаправленного улучшения;
- должен демонстрировать способность и готовность к самостоятельной работе.

1. <u>Разделы дисциплины с указанием видов занятий (лекции, семинарские и практические занятий, лабораторные работы) и их трудоёмкость в академических часах и кредитах:</u>

	Всего Количество часов по семестрам								
Виды учебной работы	часов	<u></u>	<u>сем.</u>	<u></u>	<u></u>	_11 сем.		<u></u>	сем.
1	2	3	4	5	6	7	8	9	10
1.Общая трудоемкость изучения	106					106			
дисциплины по семестрам, в т. ч.:									
1.1. Аудиторные занятия, в т. ч.:	34					34			
1.1.1.Лекции	18					18			
1.1.2.Практические занятия	16					16			
тренингового типа, в т. ч.									
1.1.2.1. Обсуждение									
прикладных проектов									
(с защитой тезисов)									
1.1.2.2. Кейсы (анализ									

проктин оптуский)					
практич.ситуаций)					
1.1.2.3. Деловые игры,					
тренинги (а также					
ролевые игры,					
имитация ситуаций)					
1.1.3.Семинары (а также					
групповые обсуждения)					
1.1.4.Лабораторные работы					
(практическ.эксперименты,					
демонстрац.опыты)					
1.1.5. Другие виды аудиторных					
занятий: Моделирование					
игрового взаимодействия					
(компьютерный тренажер)					
1.2. Самостоятельная работа	74		7	4	
2. Консультации					
3. Письменные домашние задания					
4. Контрольные работы					
5. Курсовые работы					
6. Эссе и рефераты					
7. Расчетно-графические работы					
8. Другие методы и формы занятий **					
9. Форма итогового контроля:			Зач	іет	

6. Методика формирования итоговой оценки

Распределение весов по формам контроля и оценки академической успеваемости

	В	ес форм	Ы	В	ес форм	Ы	Вес итоговых	Вес оценки
	текуш	цего кон	троля	промежуточного			оценок	посещаемост
	в резу	ультирун	ощей	контр	оля в ито	оговой	промежуточных	и,
	оцен	іке текуі	цего		оценке		контролей в	результирую
	контроля			прол	межуточ	ного	результирующей	щей оценки
				1	контроля		оценке	промежут.
					промежуточн		промежуточного	контролей и
							контроля	оценки итог.
								контроля в
								результирую
								щей оценке
								итогового
					1	1		контроля
Вид учебной	M1 ¹	M2	M3	M1	M2	M3		
работы/контроля								
Контрольная работа				0	0.5	0.5		
Тест								
Курсовая работа								

¹ Учебный Модуль

Лабораторные работы								
Письменные домашние								
задания								
Эссе (реферативного типа)								
Устный опрос (семинарс.)		0,5	0,5					
Реферат								
Практические занятия		0,5	0,5					
Вес результирующей				0	0,5	0,5		
оценки текущего контроля								
в итоговых оценках								
промежут. контролей								
Вес итоговой оценки 1-го							0	
промежуточного контроля								
в результирующей оценке								
промежут. контролей								
Вес итоговой оценки 2-го							0.5	
промежуточного контроля								
в результирующей оценке								
промежут. Контролей								
Вес итоговой оценки 3-го							0.5	
промежуточного контроля								
в результирующей оценке								
промежут. контролей т.д.								
Вес результирующей								1
оценки промежуточных								
контролей в результир.								
оценке итогов. контроля								
Экзамен/зачет (оценка								0
итогового контроля)								
	Σ = 1	Σ = 1	Σ = 1	Σ = 1	Σ = 1	Σ = 1	Σ = 1	Σ = 1

7. Содержание дисциплины:

7.1. Тематический план (Разделы дисциплины и виды занятий) по учебному плану:

Разделы и темы дисциплины		Лекции, часов	Практ. занятия, часов	Семи- нары, часов	Лабор. часов	Другие виды занятий, часов
1	2	3	4	5	6	7
Введение	1	1				
Современные проблемы молекулярной генетики. Эволюционная биология: содержание и задачи. Системная биология, ее сущность и связь с синэргетикой.	1	1				
Парадоксальное строение геномов высших эукариот.	2	1	1			

Мультигенные семейства. Строение МС глобиновых и гистоновых генов и генов рРНК. Механизмы экспрессии генов в МС. Гомогенность МС.	2	1	1		
	_				
Структура эукариотных хромосом.	2				
Мозаичное строение эукариотных генов.					
Гистоновый код.					
Интроны - как мобильные генетические		1	1		
элементы. Псевдогены, их типы, механизмы их					
образования.					
Механизмы экспресии эукариотных генов.	2				
Разнообразие регуляторных зон эукариотных					
генов - энхансеры, сайленсеры, инсуляторы.					
		1	1		
механизмы. Ремоделлинг хроматина, его типы					
и механизмы.					
Механизмы сплайсинга и редактирования					
PHK.	_				
Интеины и сплайсинг белков. Типы	2				
редактирования РНК. Эдитосома. Влияние		1	1		
редактирования РНК на альтернативный		-	1		
сплайсинг.					
Особенности репликации, репарации и	2	1	1		
рекомбинации эукриотных генов.		1	1		
Мобильные генетические элементы эукариот.	2				
Траспозоны дрожжей. Обратная транскрипция					
- механизм транспозиции МГЭ. Ретропозоны.					
Разные типы МГЭ у дрозофилы. Гибридный		1	1		
дисгенез. Ретровирусы как МГЭ.					
Эволюционная роль МГЭ.					
Перестройки ДНК у трипаносом.	2				
Амплификация генов и неравный	_				
крооссинговер. Генерирование разнообразия		1	1		
антител. Строение генов антител.					
Механизмы рекомбинанции фрагментов ДНК,	2				
кодирующих антитела. Различные уровни	<i>_</i>	1	1		
генерирования разнообразия антител.		1	1		
	2				
Некодирующие РНК, разновидности, функции,	L		4		
генерация, регуляция экспресии эук. генов,		1	1		
генный иммунитет.					<u> </u>
Эпигенетика, импринтинг, болезни	2			ĺ	
0.77	-				
импринтинга - ОРД, развитие,	_	1	1		
импринтинга - ОРД, развитие, стадиоспецифичность, диференцировка, старение, канцерогенез.		1	1		

Молекулярно-генетические механизмы	2				
развития.		1	1		
Метилирование ДНК и наследование		_	_		
дифференцированного состояния.					
Оптимизация генной экспрессии	2				
Особенности экспрессии прокариотических и					
эукариотических генов. Слитные белки и		I	1		
проблема рамки считывания.					
Синтез нативных чужеродных белков.	2				
Оптимизация экспрессии генов на уровне					
транскрипции и трансляции. Структура		1	1		
промотора, регулируемые промоторы.					
Гибридные опероны.					
Молекулярные механизмы регуляции	2				
клеточного цикла, дифференцировки, развития					
и старения					
Молекулярно-генетические механизмы		1	1		
канцерогенеза и наследственных болезней					
человека.					
Генная терапия	2	1	1		
ИТОГО	34	18	16		

4.2 Содержание дисциплины

Парадоксальное строение геномов высших эукариот.

С-value парадокс - отсутствие корреляции между свойствами геномов и их таксономическим положением. Кинетика реассоциации эукариотных ДНК. Уникальные гены и повторяющиеся последовавтельности. Сателлитная ДНК. Типы повторяющихся последовательностей, их организация и локализация в геноме. Мультигенные семейства. Строение МС глобиновых и гистоновых генов и генов рРНК. Механизмы экспрессии генов в МС. Механизмы, обеспечивающие гомогенность МС. Геномы органелл.

Структура эукариотных хромосом.

Строение нуклеосом. Уровни Неактивная ДНК организации хроматина. конденсирована В гетерохроматине, активная В эухроматине. Механизмы гетерохроматинизации. Эффект положения. Метафазная ДНК в метафазном матриксе. С активными генами связаны измененные нуклеосомы. Места, чувствительные к ДНК-азе I коррелируют с активными областями хроматина. Недометилирование ДНК коррелируют с активностью генов. ДНК-метилазы.

Мозаичное строение эукариотных генов.

Экзоны и интроны. Гипотезы о раннем и позднем происхождении интронов. Типы последовательностей, содержащихся в интронах. Интроны - как мобильные генетические элементы. Псевдогены, их типы, механизмы их образования.

Механизмы экспресии эукариотных генов.

Транскрипция. Три типа ДНК-зависимых РНК полимераз. Строение их промоторов. Базальные факторы транскрипции. Транскриптосома, ее сборка. Разнообразие регуляторных зон эукариотных генов - энхансеры, сайленсеры, инсуляторы. Регуляция генов за счет позитивных регуляторов транскрипции. Модификация нуклеосом, ее типы и механизмы. Ремоделлинг хроматина, его типы и механизмы.

Механизмы сплайсинга и редактирования РНК.

Сплайсинг. Малые ядерные РНП-частицы обеспечивают сплайсинг. Сплайсосомы. Сплайсинг рРНК и тРНК. Сплайсинг митохондриальных РНК - интроны кодируют матуразы. Аутосплайсинг рРНК у простейших. Альтернативный сплайсинг. Транссплайсинг. Интеины и сплайсинг белков. Типы редактирования РНК. Эдитосома. Влияние редактирования РНК на альтернативный сплайсинг.

Особенности репликации, репарации и рекомбинации эукриотных генов.

Фазы клеточного цикла и репликация ДНК. Репликоны. Разные гены реплицируются в разное время S-фазы. Строение цетромеров и теломеров. Теломераза. Особенности рекомбинации и репарации у эукариот. Пигментозная ксеродерма - наследственное заболевание, приводящее к нарушению репарации тиминовых димеров.

Мобильные генетические элементы эукариот.

Траспозоны дрожжей. Обратная транскрипция - механизм транспозиции МГЭ. Ретропозоны. Разные типы МГЭ у дрозофилы. Гибридный дисгенез. Ретровирусы как МГЭ. Эволюционная роль МГЭ.

Молекулярно-генетические механизмы геномных перестроек.

Кассетная модель переключения типа спаривания у дрожжей. Перестройки ДНК у трипаносом. Амплификация генов и неравный крооссинговер. Генерирование разнообразия антител. Строение генов антител. Механизмы рекомбинанции фрагментов ДНК, кодирующих антитела. Различные уровни генерирования разнообразия антител.

Молекулярно-генетические механизмы развития.

Метилирование ДНК и наследование дифференцированного состояния. Эксцизия и избирательная репликация генов рРНК в ооцитах амфибий. Строение гомеотических генов. Гомеодомены и их функции. Гомеотические гены и механизмы эволюции.

Эпигенетика.

Эпигенетические модификации генома, импринтинг, ОРД.

Редактирование РНК, Редактирование ядерных транскриптов. Редактирование транскриптов органелл. РНК редактирование у трипаносоматид

Соматическая рекомбинация, особенности экспресии иммуноглобулиновых генов.

Молекулярно-генетические механизмы канцерогенеза и наследственных болезней человека.

Клеточные культуры в изучении канцерогенеза. Белки, регулирующие пролифирацию и дифференцировку. Генетические основы рака. Онкогенные вирусы. Онкогенные ретровирусы происходят из клеточных онкогенов. Типы онкогенов и механизм их действия. Супрессоры развития опухолей, белок р53. Хромосомные аномалии, связанные с онкологическими заболеваниями человека. Наследственные болезни человека, их молекулярная природа. Принципы генной терапии.

В зависимости от способа введения экзогенных ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo). Клеточная генная терапия или терапия ех vivo предполагает выделение и культивирование специфических типов клеток пациента, введение в них чужеродных генов, отбор трансфецированных клеток и реинфузию их тому же пациенту.

Комбинированный иммунодефицит может быть результатом дефекта гена аденозиндезаминазы. Это заболевание клинически и иммунологически характеризуется дефектом как Т-, так и В-лимфоцитов. Диагностируется заболевание обычно в раннем возрасте, а признаками служат тяжелые, потенциально смертельные инфекции, глубокое нарушение клеточного иммунитета и дефицит антител, лимфопения, в основном за счет Т-лимфоцитов. Клинические проявления обычно включают задержку и отсутствие прогресса физического и моторного развития, персистирующие, вяло текущие и необычно упорные инфекции, вызванные низковирулентными оппортунистическими микроорганизмами (например, *Candida, Pneumocystis carinii, cytomegalovirus*). Тяжелые комбинированные первичные иммунодефициты классифицируется далее в зависимости от

патогенеза, когда он известен (например, дефекта фермента), типа наследования и уровня нарушения дифференцировки.

Одной из форм комбинированного иммунодефицита является тяжелая комбинированная иммунная недостаточность ТКИН, или англоязычное (severe combined immunodeficiency - SCID или "bubble boy" diseace). Обнаружены как X-сцепленная, так и аутосомно- рецессивная формы SCID. В случаях SCID с нормальным количеством Влимфоцитов обычно наблюдается X-сцепленное наследование. Впервые попытка лечения такого больного методами генотерапии была предпринята в США в 1990 г. У больного ребенка извлекли Т-лимфоциты, трансформировали ретровирусным вектором, введя нормальный ген аденозиндезаминазы и вернули клетки в организм. Введение приходилось повторять. Более эффективна аналогичная трансформация стволовых клеток костного мозга.

В январе 2009 года итальянские ученые опубликовали данные о полном излечении 8-ми летнего мальчика, страдающего этим заболеванием. Кроме того, 8 из 10 участвовавших в клиническом испытании не нуждаются более в ферментозаместительной терапии и живут теперь нормальной жизнью. Никаких серьезных побочных эффектов от применения генотерапии обнаружено не было.

Х-сцепленная адренолейко дистрофия (АДЛ) - дегенеративное заболевание белого вещества головного мозга. Поражает мальчиков с частотой примерно 1/17 000. Оно убивает их еще до того, как наступит подростковый возраст. Заболевание обусловлено дефектом обмена жирных кислот. В результате нарушается миелинизация нервных клеток. Клиническая картина выражается в интеллектуальной, поведенческой недостаточности, расстройстве памяти, нарушении походки, расстройстве зрения вплоть до атрофии зрительных нервов.

В экспериментах французских исследователей скорректированный ген вставляли в клетки крови 7-летнего мальчика, страдающего АДЛ, некоторые клетки начинали продуцировать необходимый для обмена жирных кислот протеин, а также, по видимому, мигрировали в мозг. По крайней мере, спустя 2 года прогрессирующее повреждение мозга, характерное для этой болезни, прекратилось. В этих экспериментах гены доставлялись в клетки с помощью инактивированного вируса иммунодефицита человека (HIV).

Компания Genetix Pharmaceuticals, специализирующаяся на соматической генной терапии,

также сообщила в ноябре 2009 года о создании препарата для лечения АДЛ на основе собственных гемопоэтических стволовых клеток костного мозга, «зараженных» модифицированным вирусом ВИЧ (лентивирусный вектор), несущим в себе ген, которого недостает в организме больного АДЛ. Такой препарат уже ввели двум юным пациентам (после миелоаблации), спустя 15 месяцев прогрессирование болезни прекратилось.

Генная терапия in vivo основана на прямом введении клонированных и определенным образом упакованных последовательностей ДНК в специфические ткани больного. В настоящее время не существует общедоступного метода культивирования клеток легких, поэтому при легочных заболеваниях единственный способ доставить чужеродный ген - это ввести его прямо в организм.

Муковисцидоз - весьма распространенное среди людей белой расы тяжелое наследственное заболевание легких, которое поражает, например, в семьях из Центральной Европы одного новорожденного из 2500 и для которого установлен дефектный ген, кодирующий белок-регулятор трансмембранной проводимости. Основное проявление дефектного гена — пневмония. Поражаются все эпителиальные клетки. Основная проблема — как доставить ген в клетки, покрытые слизью, которая препятствует трансформации. Неповрежденную копию "гена заболевания", включенную в аденовирусный вектор или липосому, вводят в форме аэрозоля в дыхательные пути больного.

Для коррекции нарушения при прогрессирующей мышечной дистрофии Дюшенна (заболевании мальчиков, связанном с дефектами X-хромосомы) нормальный ген, кодирующий белок дистрофии, пытались прямо вкалывать в мышечные волокна, используя либо "голую" ДНК, либо аденовирусный вектор. Другие исследователи трансплантировали больному миобласты после генетической коррекции. Ранее неподвижный ребенок приобретал способность двигаться! К сожалению, во всех этих опытах удается получить только временный терапевтический эффект, и процедура введения гена должна неоднократно повторяться.

Список наследственных заболеваний, которые пытаются или планируют лечить генами, велик. Это и ревматоидный артрит, и фенилкетонурия, и заболевания, связанные с недостатком гормонов (инсулина, эритропоэтина, гормона роста). В случае хронической анемии, связанной с дефицитом эритропоэтина, на основании опытов на животных предлагается принципиально новый подход к лечению. Так как каждая из наших клеток

содержит один и тот же геном, можно заставить фибробласты кожи, которые в норме не производят эритропоэтина, синтезировать этот гормон. Для этого нужно ввести в геном новую контролирующую область и тем самым снять запрет со считывания (экспрессии) гена эритропоэтина, присутствующего, но "молчащего" в фибробластах.

Практически в любой области медицины либо начаты клинические испытания лечения наследственных заболеваний с помощью генотерапии, либо в опытах на животных разрабатываются подходы к такому лечению. По мере усовершенствования методов доставки генов и контроля их экспрессии список заболеваний, к которым можно применять генотерапию, будет безусловно расширяться.

Генотерапия применима не только к наследственным заболеваниям. Предстоит решить проблему лечения генами "чумы XX века" — синдрома приобретенного иммунодефицита (СПИД), возникающего при заражении вирусом иммунодефицита человека (ВИЧ). ВИЧ представляет собой ретровирус, поражающий Т-лимфоциты и макрофаги. Болезнь удалось бы победить, если бы были найдены новые гены, введение которых в зараженные ВИЧ лимфоциты останавливало бы дальнейшее размножение вируса. Предложено множество хитроумных способов борьбы со СПИДом с помощью привнесенных генов. Все они основаны на новейших данных о строении и функционировании генома ретровируса. Например, вводя прямо в мышцы больного ретровирусные векторы, несущие отдельные гены ВИЧ, ученые рассчитывали на то, что гены ВИЧ после внедрения в ДНК хромосом хозяина смогут дать информацию для синтеза вирусных белков и произойдет "противоСПИДная" иммунизация больного этими белками. Однако еще не получено ощутимых результатов, которые сулили бы успех в борьбе с вирусом дикого типа, коварство которого заключается в его изменчивости.

Огромные перспективы открывает использование генотерапии для лечения онкологических заболеваний. Многолетние усилия ученых привели к пониманию того, что рак — это генетическое заболевание и его развитие происходит многостадийно, в результате серии генетических нарушений, накапливающихся в клетке. Следовательно, каждый из таких отдельных генетических эффектов может стать точкой приложения генотерапевтического подхода.

В настоящее время в мире около 400 проектов по генной терапии находятся на различных стадиях клинических испытаний: 261 из них проходит первую стадию (оценка токсичности), 133 - вторую (испытание на небольшой группе тяжелобольных пациентов)

и только 3 проекта (два по лечению рака мозга и один по гемофилии) - на заключительной третьей стадии (масштабные клинические испытания). Пока генная терапия применяется в основном в онкологии (более 60% проектов). Примерно по 15% приходится на генную терапию инфекционных (СПИД, гепатит В, туберкулез) и моно генных заболеваний (муковисцидоз, семейная гиперхолестеринемия, мукополисахаридозы, гемофилия А и др.).

Методы генной терапии позволяют лечить различные генетические патологии в период внутриутробного развития.

Генная терапия успешно применяется для лечения не только наследственных, но и значительно более распространенных мультифакториальных болезней (диабет, остеопороз, ревматоидный артрит, различные опухоли). Для лечения таких заболеваний применяется не одна, а сразу много генетических конструкций, исправляющих дефекты различных стадий течения патологического процесса.

5. Образовательные технологии, включая интерактивные формы обучения

Освоение дисциплины предполагает использование как традиционных (лекции, практические занятия с использованием методических материалов), так и инновационных образовательных технологий с использованием в учебном процессе активных и интерактивных форм проведения занятий: лекции визуализации, практические занятия: мозговые штурмы, дискуссии, выполнение ряда практических заданий с использованием профессиональных программных средств создания и ведения электронных баз данных; мультимедийных программ, включающих подготовку и выступления студентов на семинарских занятиях.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

- **Тема 1.** Предмет и содержание клеточной и генной инженерии, взаимосвязь с другими предметами. История развития предмета и основные достижения современного этапа.
- **Тема 2.** Биообъекты как средство производства лекарственных, профилактических и диагностических средств.
- **Тема 3.** Сохранение биоразнообразия жизни: банк биоматериалов. Методы криоконсервации биологического материала.

- Тема 4. Метод клонирования теоретические основы и перспективы применения.
- **Тема 6.** Биопрепараты применяемые в медицине. Гликопротеиды лектины их структура и биологическое действие. Получение антител, интерферона и интерлейкина, съедобнух вакцин: свойства и использование, клонирование и экспрессия, производство.
- **Тема 7.** Использование растений как зеленые ферментеры по производству биологически активных соединений. Методы повышения синтеза вещества-интереса в культуре клеток и тканей растений.
- Тема 8. Создание искусственных живых систем и самоуправляемые биосистемы.
- Тема 9. Структура и транскрипция эукариотических генов
- **Тема 10.** Экспресс-диагностика, анализ и оценка генетически реконструированного материала.
- **Тема 11.** Можно ли использовать трансгенные технологии для создания новых видов биологического оружия? Явление биотерроризма.

Примерные вопросы к экзамену (зачету):

- 1. Клонирование в бактериальных клетках. Используемые ферменты (рестриктазы, Т4, ДНК-полимераза, фрагмент Кленова, полинуклеотидкиназа, нуклеаза S1, фосфатаза, ДНК-лигаза).
- 2. Плазмиды. Ориджины репликации.
- 3. Саузерн, нозерн и вестерн блоты.
- 4. ПЦР. Конструирование праймеров. Ферменты (Таq-полимераза, Pfu-полимераза,
- 5. Векторы (на основе фага лямбда, космиды, YAC'и BAC'и) их емкость, особенности работы с ними.
- 6. Библиотеки кДНК (конструирование, нормализация, размер).
- 7. Экспрессия генов в клетках. Селективные маркеры.
- 8. Получение рекомбинантных белков в бактериальных клетках.
- 9. Секвенирование НК. Принципы секвенирования. Метод Максама-Гилберта. Метод Сэнгера. Способы разделения и детекции фрагментов ДНК.
- 10. Получение стабильных клеточных линий, экспрессирующих трансген.
- 11. Системы введения трансгенов в клетки млекопитающих, основанные на

- гомологичной рекомбинации. Негативная и позитивная селекция. Генная инженерия растений. Способы ведения чужеродных генов в растения.
- 12. Агробактериальное заражение и трансформация растений. Ті-плазмида. Т-ДНК:
- 13. Свойства трансгенных растений.
- 14. Использование культуры растительных клеток
- 15. Суспензионные культуры, параметры их роста, ростовые кривые
- 16. Культивирование отдельных клеток
- 17. Иммобилизация растительных клеток, основные методы иммобилизации
- 18. Системы культивирования иммобилизованных клеток: система культуры с плоской основой, культуры в колонке
- 19. Применение изолированных протопластов, области применения
- 20. Способы получения и культивирования протопластов, области применения, как теоретического, так и прикладного характера
- 21. Способы культивирования протопластов: метод жидких капель и метод платирования
- 22. Слияние протопластов парасексуальная гибридизация
- 23. Создание гербицидоустойчивых растений
- 24. Проблемы биобезопасности трансгенных растений.

Литература

Основная литература:

1 Базовые учебники (учебно-практические пособия)

- 1. Афасижев. Редактирование РНК. Мол. биология 2007. т.41, 260-295.
- 2. Генная терапия медицине будущего, обзорные материалы. М.: ВИНИТИ РАН, 2000.
- 3. Глебов О. К. Генетическая трансформация соматических клеток // Методы культивирования клеток. Л.: Наука, 1988.
- 4. Глик Б., Пастернак Дж. Молекулярная биотехнология. М.: Мир, 2002.
- 5. Л. И. ПАТРУШЕВ, Т. Ф. КОВАЛЕНКО. Функции некодирующих последовательностей генома млекопитающих. Успехи биологической химии. 2014. т.45, 39-102

- 6. Льюин Б., Гены. М., Мир., 1987.
- 7. *Назаренко С.А.* Геномный импринтинг и его роль в этиологии наследственных болезней человека. *Бюллетень сибирской медицины*, *3*, 2004.
- 8. Паткин Е., Сучкова И. Регуляторные механизмы импринтинга у млекопитающих. Цитология 2006, т.48(7), стр. 578-595.
- 9. Патрушев Л.И. Экспрессия генов. М.: Мир, 2000.
- 10. С. А. Лавро , М. В. Кибано. Некодирующие РНК и структура хроматина. Успехи биологической химии, т. 47, 2007, с. 53–5883.
- Спирин А.С. Современная биология и биологическая безопасность. Человек, 1998,
 №5.
- 12. Фаворова О. О. Лечение генами фантастика или реальность? // Соросовский образовательный журнал. № 2. 1997. С. 21 27.
- 13. Чемерис А.В., Ахунов Э.Д., Вахитов В.А. Секвенирование ДНК. М.: Наука, 1999.
- 14. Щелкунов С.А. Генетическая инженерия. Новосибирск: Изд. Сибирское университетское издательство, 2004. 496 с.Остерман Л.А. Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. М.: Наука, 1981. 288 с.

Интернет-ресурсы:

Каталог русскоязычных медицинских сайтов и статей - http://www.medlook.ru/ Molbiol.ru - http://molbiol.ru/

Научно-информационный журнал ?Биофайл? - http://biofile.ru/bio/5241.html Научные журналы по биологии - http://www.jcbi.ru/links/journals.htm Онлайн Книги - http://www.ncbi.nlm.nih.gov/sites/entrez?db=Books

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины предполагает использование следующего материальнотехнического обеспечения: наличие соответствующего лабораторного оборудования, комплекты необходимой литературы в соответствии с требованиями государственных образовательных стандартов с соблюдением авторских и смежных прав. мультимедийный проектор, компьютер с доступом в интернет.