ГОУ ВПО РОССИЙСКО – АРМЯНСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

УТВЕРЖДЕНО УС РАУ

Ректор Дарбинян

08.08.2020 г., протокол № 8

ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ «ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» ПО ПРОФИЛЮ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

«ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА»

1. Аннотация

Актуальность программы

Теория интегральных уравнений была и остается одной из центральных областей математики и ее приложений. К настоящему времени наиболее полные результаты получены по решению регулярных интегральных уравнений Фредгольма и Вольтерра 1-го и 2-го родов, сингулярных интегральных уравнений. Исследуемые уравнения точно решаются лишь в очень редких частных случаях, поэтому разработка теоретически обоснованных эффективных методов их приближенного решения в пространствах обобщенных функций является актуальной задачей.

Цели реализации программы

Интегральные уравнения широко используются в моделях, рассматриваемых в теории упругости, газовой динамике, электродинамике, экологии и других областях физики, в которых они являются следствием законов сохранения массы, импульса и энергии. Решение интегральных уравнений Фредгольма и Вольтера І-го рода прямыми методами затруднено и требует привлечения частных процедур. Поэтому создание базиса фундаментальных знаний относительно численных подходов к реализации математических моделей в постановке интегральных уравнений является важной задачей в системе прикладного математического образования.

Программа повышения квалификации «Интегральные уравнения» направлена на совершенствование и получение новой компетенции в области прикладной математики и информатики, необходимой для профессиональной деятельности, и (или) повышение профессионального уровня в рамках имеющейся квалификации.

Задача реализации программы

Слушатели должны получить навыки и умения для применения подходящих методов и алгоритмов для изучения и решения интегральных уравнений.

- **2.** Уровень образовательной программы дополнительное профессиональное образование.
- 3. Вид образовательной программы: дополнительная (повышение квалификации).

4. Трудоемкость программы повышения квалификации

Настоящая программа рассчитана на 72 академических часов.

- 5. Форма обучения очная.
- 6. Срок освоения программы 18 недель по 2 занятий в неделю.
- 7. Категориями слушателей для программы повышения квалификации являются лица, имеющие среднее профессиональное и (или) высшее образование.
- 8. Для приема на обучение предоставляются следующие документы:
 - 8.1 Заполненная в установленной форме заявка;
 - 8.2 Копия документа, удостоверяющего личность;
 - **8.3** Диплом о наличии среднего профессионального или высшего образования лица, имеющие среднее профессиональное и (или) высшее образование.
- 9. Планируемые результаты обучения:

После прохождения квалификации слушатель должен:

Знать:

- теорию интегральных уравнений;
- математическую теорию упругости.

Уметь

- решать задачи теории упругости привести к интегральным уравнениям;
- решать интегральные уравнения численными методами;
- численно реализовать построенные схемы.

Владеть

• теорией интегральных уравнений, псевдокодами численного решения задач теории упругости.

10. Описание перечня профессиональных компетенций, формируемых в результате освоения программы повышение квалификации

- способностью к абстрактному мышлению, анализу, синтезу;
- готовностью действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения;
- готовностью к саморазвитию, самореализации, использованию творческого потенциала;
- способностью решать актуальные задачи фундаментальной и прикладной математики;
- способностью совершенствовать и реализовывать новые математические методы решения прикладных задач;
- способностью разрабатывать математические модели и проводить их анализ при решении задач в области профессиональной деятельности;
- способностью проводить научные исследования и получать новые научные и прикладные результаты самостоятельно и в составе научного коллектива;
- способностью разрабатывать и анализировать концептуальные и теоретические модели решаемых научных проблем и задач;
- способностью разрабатывать и применять математические методы, системное и прикладное программное обеспечение для решения задач научной и проектнотехнологической деятельности.

11. Форма итоговой аттестации - устный экзамен

12. Распределение объема программы по разделам и/или темам и видам учебной работы

Разделы/темы дисциплины	Всего (ак. часов)	Лекции(ак . часов)	Практ. занятия (ак. часов)
1	2=3+4	3	4
Раздел 1. Введение в теорию интегральных уравнений	10	4	6

Тема 1.1 Интегральное уравнение			
Фредгольма 2-ого рода	4	2	2
Тема 1.2 Интеграл типа Коши.	6	2	4
Краевая задача Римана			
Раздел 2. Численные методы	16	6	10
решения интегральных	10	U	10
Тема 2.1 Приближенные методы			
решения интегральных уравнений.	6	2	4
Метод последовательных			
Тема 2.2 Приближенные методы			
решения интегральных уравнений.	6	2	4
Метод аппроксимации ядра			
Тема 2.3 Приближенные методы			
решения интегральных уравнений.	4	2	2
Применение интегральных			
Раздел 3. Создание минипакета			
Раздел 3. Создание минипакета решения интегральных	6	4	2
	6	4	2
решения интегральных	6	4	2
решения интегральных уравнений	6	4	2
решения интегральных уравнений Тема 3.1 Составление минипакета с		•	_
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или	6	4	2
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab		•	_
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab Раздел 4. Приведение дифференциальных уравнений к интегральным уравнениям	6	4	2
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab Раздел 4. Приведение дифференциальных уравнений к	6	4	2
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab Раздел 4. Приведение дифференциальных уравнений к интегральным уравнениям Тема 4.1 Метод Ньютона — Канторовича	22	12	2 10
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab Раздел 4. Приведение дифференциальных уравнений к интегральным уравнениям Тема 4.1 Метод Ньютона —	22	12	2 10
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab Раздел 4. Приведение дифференциальных уравнений к интегральным уравнениям Тема 4.1 Метод Ньютона — Канторовича	6 22	12 4	2 10 2
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab Раздел 4. Приведение дифференциальных уравнений к интегральным уравнениям Тема 4.1 Метод Ньютона — Канторовича Тема 4.2 Сингулярные	6 22	4 12 4 2	2 10 2
решения интегральных уравнений Тема 3.1 Составление минипакета с помощью WolframMathematics или MatLab Раздел 4. Приведение дифференциальных уравнений к интегральным уравнениям Тема 4.1 Метод Ньютона — Канторовича Тема 4.2 Сингулярные интегральные уравнения	6 22	12 4	2 10 2

Тема 4.4 Составление минипакета с помощью WolframMathematics или MatLab	6	4	2
Раздел 5. Интегральные уравнения теории упругости	18	10	8
Тема 5.1 Основные положенияматематической теории упругости.Плоская задача	6	4	2
Тема 5.2 Интегральные уравнениядвумерных задач теории упругости.Уравнение Мусхелишвили	4	2	2
Тема 5.3 Обобщенные упругие потенциалы. Регулярные и сингулярные интегральные уравнения основных задач теории	4	2	2
Тема 5.4 Спектральные свойства, метод последовательных приближений	4	2	2
ИТОГО	72	36	36

13. Содержание разделов/тем программы

Раздел 1. Введение в теорию интегральных уравнений

Определение интегрального уравнения, линейного интегрального уравнения, классификация линейных интегральных уравнений (уравнения Фредгольма и Вольтерра первого и второго рода, однородные, неоднородные). Ядро, свободный член интегрального уравнения, требования к ядру и свободному члену. Примеры физических задач, приводящих к интегральным уравнениям (к уравнению Вольтерра и уравнению Фредгольма). Сведение задачи Коши для обыкновенного дифференциального уравнения п-порядка к интегральному уравнению.

Раздел 2. Численные методы решения интегральных уравнений

Метод последовательных приближений для решения интегральных уравнений. Теорема о существовании и единственности решения интегральных уравнений.

Раздел 3. Создание минипакета решения интегральных уравнений

Используя встроенные функции и внутренние возможности известных пакет прикладных программ создать среду решения интегральных уравнений.

Раздел 4. Приведение дифференциальных уравнений к интегральным уравнениям

Задача Штурма – Лиувилля. Постановка, физические примеры; сведение задачи Штурма – Лиувилля к интегральному уравнению.

Раздел 5. Интегральные уравнения теории упругости

Интегральные уравнения задач теории упругости. Прямой и непрямой методы граничных интегральных уравнений. Фиктивные граничные условия и непрямой метод граничных элементов.

Литература:

- 1. Партон В.З., Перлин П.И. Интегральные уравнения теории упругости.
- 2. Штаерман И.Я. Контактные задачи теории упругости.
- 3. Колмогоров А.Н. Избранные труды. Математика и механика. М.: Наука, 1985

а) Базовый учебник

Партон В.З., Перлин П.И. Интегральные уравнения теории упругости.

б) Дополнительная литература

Штаерман И.Я. Пиковский А.А. Основы теории устойчивости строительных конструкций.

- **14.** Лицам, успешно освоившим соответствующую дополнительную профессиональную программу и прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации.
- 15. Программа составлена кафедрой математики и математического моделирования и одобрена Советом Института математики и информатики РАУ.