ГОУ ВПО Российско-Армянский (Славянский) университет

Директор Института математики и информатики

математики и информатики

математики и информатики

претиска доминатика

математики и информатики

математики и информатики и информатики

математики и информатики и информа

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

Наименование дисциплины: Архитектура ЭВМ и язык ассемблера

Авторы: канд.тех.наук, доцент Овакимян Анна Седраковна канд.тех.наук Акопян Дживан Андраникович

Направление подготовки: 01.03.02 Прикладная математика и информатика Наименование образовательной программы01.03.02 Прикладная математика и информатика

1. АННОТАЦИЯ

1.1. Краткое описание содержания данной дисциплины;

В рамках курса студенты будут изучать основы работы ЭВМ и язык ассемблера для архитектуры (8086).

После удачного прохождения курса студенты должны:

- Знать основы организации ЭВМ, язык ассемблера 8086, принцип работы прерываний, основы организации памяти, причины появления уязвимостей в программах, физические основы работы ЭВМ.
- Уметь писать программы на языке ассемблера, анализировать причины ошибок при работе с памятью, анализировать способы улучшения производительности программ.
- Владеть навыками разработки приложений на уровне языка ассемблера.
- **1.2.** Трудоемкость в академических кредитах и часах, формы итогового контроля (экзамен/зачет)

216 часов- 6 ЗЕТ

1.3. Взаимосвязь дисциплины с другими дисциплинами учебного плана специальности (направления)

Курс является базовым для ряда последующих курсов: Операционные системы, программирование в среде Linux.

1.4. Результаты освоения программы дисциплины:

Код компетенции	Наименование компетенции	Код индикатора достижения компетенций	Наименование индикатора достижений компетенций
ПК-7	способностью к разработке и	1	Знать методы и технологии
	применению алгоритмических и		разработки и применения
	программных решений в области		системного и прикладного
	системного и прикладного		программного обеспечения
	программного обеспечения	2	Разрабатывать и применять
			алгоритмические и
			программные решения в
			области системного и
			прикладного программного
			обеспечения

		3	Владеть способностью
			разрабатывать и применять
			алгоритмические и
			программные решения в
			области системного и
			прикладного программного
			обеспечения
ПК-8	способностью приобретать и	1	Знать основные методы
	использовать организационно-		координации деятельности
	управленческие навыки в		органов управления,
	профессиональной и социальной		организации надзора,
	деятельности		контроля и информационного
			обеспечения
			профессиональной
			деятельности
		2	Уметь применять
			нормативноправовые основы
			действующего
			законодательства в области
			решения профессиональных
			задач
		3	Владеть навыками принятия
			управленческих решений в
			области профессиональной
			деятельности
ПК-9	способностью составлять и	1	Знать план выполняемой
	контролировать план выполняемой		работы в ходе практической
	работы, планировать необходимые для		деятельности для получения
	выполнения работы ресурсы, оценивать		профессиональных умений и
	результаты собственной работы		опыта профессиональной
			деятельности
	ı		

		2	Уметь составлять и
		2	
			контролировать план
			выполняемой работы,
			планировать необходимые
			для выполнения работы
			ресурсы, оценивать
			результаты собственной
			работы
		3	Регулярно оценивать и
			анализировать результаты
			выполненной работы с целью
			выявления достижений, а
			также выявления возможных
			областей для улучшения и
			развития профессиональных
			навыков.
УК-1	Способен осуществлять поиск,	1	Знает, как осуществлять
	критический анализ и синтез		поиск, критический анализ и
	информации, применять системный		синтез информации для
	подход для решения поставленных		решения поставленных
	задач		профессиональных задач
		2	Умеет применять системный
			подход на основе поиска,
			критического анализа и
			синтеза информации для
			решения задач в
			профессиональной области
		3	Владеет навыками поиска,
			синтеза и критического
			анализа информации в своей

			профессиональной области;
			владеет системным подходом
			для решения поставленных
			задач
ОПК-2	Способен использовать и адаптировать	1	Знает основные задачи и
	существующие математические методы		области применения
	и системы программирования для		математических методов,
	разработки и реализации алгоритмов		основные принципы
	решения прикладных задач		математического
			моделирования, методы
			построения и анализа
			математических моделей
		2	Умеет выбирать
			математические методы,
			адаптировать и использовать
			их для разработки и
			реализации алгоритмов
			решения прикладных задач
		3	Осуществляет выбор и
			адаптацию математических
			методов и систем
			программирования для
			разработки и реализации
			алгоритмов решения
			прикладных задач

2. УЧЕБНАЯ ПРОГРАММА

2.1. Цели и задачи дисциплины

Цель данного курса научить студентов основам организации ЭВМ, объяснить, как взаимодействуют между собой разные части ЭВМ, как программа, написанная на языке программирования, выполняется на ЭВМ.

2.2. Трудоемкость дисциплины и виды учебной работы (в академических часах и зачетных единицах)

	Всего, в	Pa	аспредел	тение 1	по сем	естрам	
Виды учебной работы	акад.		II				
	часах	сем	сем	сем	сем.	сем	сем.
1	2	3	4	5	6	7	8
1.Общая трудоемкость изучения							
дисциплины по семестрам, в т. ч.:	216						
1.1. Аудиторные занятия, в т. ч.:	64		64				
1.1.1.Лекции	32		32				
1.1.2.Практические занятия, в т. ч.	32		32				
1.2. Самостоятельная работа, в т. ч.:	80		80				
1.3. Другие методы и формы занятий	36		36				
Итоговый контроль (Экзамен, Зачет,			Экза				
диф. зачет - указать)			мен				

2.3. Содержание дисциплины

2.3.1. Тематический план и трудоемкость аудиторных занятий (модули, разделы дисциплины и виды занятий) по рабочему учебному плану

Разделы и темы дисциплины	Всего (ак. часов)	Лекци и(ак. часов)	Практ. занятия (ак. часов)	Семина -ры (ак. часов)	Лабор. (ак. часов)	Дру гие вид ы заня тий (ак. часо в)
1	2=3+4+5 +6+7	3	4	5	6	7
Модуль 1.						
Введение	2	2	0			
Раздел 1. Архитектура набора команд, производительность и безопасность программ	38					
Тема1. Регистры процессора IA32, размещение переменных в памяти. Компиляция и компоновка программ.	4	2	2			

Тема 2. Основные арифметические команды, регистр флагов, переполнение, команды изменения естественного порядка выполнения программы	10	2	8		
Тема 3. Реализация управляющих операторов языка Си: условная передача данных, организация циклов.	4	2	2		
<i>Тема 4</i> . Оператор switch, организация таблиц перехода	4	2	2		
Тема 5. Представление программы в памяти, организация вызовов функций, фрейм функции в стеке.	4	2	2		
Тема 6. Указатели и агрегатные типы данных. Размещение массивов в памяти	4	2	2		
<i>Тема 7</i> . Реализация многомерных и многоуровневых массивов	4	2	2		
<i>Тема 8</i> . Размещение структур в памяти.	4	2	2		
Раздел 2. Система программирования (языка Си)					
Тема 9. Двоичный интерфейс приложения, соглашение о вызовах. Рекурсивные функции. Функция main.	4	2	2		
<i>Тема 10.</i> Процессор x86-64, различные соглашения о вызовах.	4	2	2		
<i>Tема 11</i> . Организация динамической памяти. Функция malloc.	4	2	2		
Тема 12. Переполнение буфера, эксплуатация ошибок, механизмы защиты.	4	2	2		
Тема 13. Числа с плавающей точкой. Представление вещественных чисел.	4	2	2		
<i>Тема 14</i> . Процессор x87. Архитектура и основные команды.	4	2	2		
Тема 15. Компиляция. Схема работы ассемблера.	4	2	2		

Тема 16. Статическая компоновка программ. Формат объектных файлов ELF. Создание статической библиотеки. Тема 17. Динамические (разделяемые) библиотеки.	4	2	2		
<i>Тема 18</i> . Прерывания, процессы, виртуальная память	4	2	2		
Модуль 2					
Раздел 3. Архитектура ЭВМ					
Тема 19. Аппаратура ЭВМ. Физические основы, логические вентили, полусумматор, полный сумматор, АЛУ.	4	2	2		
Тема 20. Статическая память. Защелки. Синхронная SR-защелка. Синхронная D-защелка. Шеститранзисторная ячейка статической двоичной памяти (бит) SRAM	4	2	2		
Тема 21. Динамическая память. Интегральные схемы. Закон Мура. Оперативная память. Энергонезависимая память.	2	2	0		
<i>Тема 22</i> . Иерархия памяти. Кэш память	4	2	2		
<i>Тема 23</i> . Организация конвейерных вычислений. Архитектуры RISC и CISC	2	2	0		
итого	64	32	32		

2.3.2. Краткое содержание разделов дисциплины в виде тематического плана

Модуль 1

Введение

Раздел 1 Архитектура набора команд, производительность и безопасность программ

Тема 1. Регистры процессора IA32, размещение переменных в памяти. Компиляция и компоновка программ.

Регистры процессора 8086, 8, 16, 32, 64 битные регистры. Размещение программы в памяти, сегменты кода, стека, кучи. Директивы, представление отрицательных чисел. В.И. Юров [1-3]

Тема 2. Основные арифметические команды, регистр флагов, переполнение, команды изменения естественного порядка выполнения программы

Арифметические инструкции, первая программа, знаковое и беззнаковое переполнение, регистр флагов, изменение потока управления программы с учетом регистра флагов. Отображение арифметических команд языка С на язык ассемблер.

В.И. Юров [6-8]. Bryant, O'Hallaron Computer Systems. A programmer perspective [3]

Тема 3. Реализация управляющих операторов языка Си: условная передача данных, организация циклов.

Инструкции перехода. Организация условных и безусловных переходов. Организация циклов. Отображения конструкций управления потока языка С в язык ассемблер.

Bryant, O'Hallaron Computer Systems. A programmer perspective [3]

Tema 4. Оператор switch, организация таблиц перехода

Отображение оператора switch языка С в язык ассемблер. Таблицы переходов.

Bryant, O'Hallaron Computer Systems. A programmer perspective [3]

Тема 5. Представление программы в памяти, организация вызовов функций, фрейм стека функции

Организация вызовов функций. Соглашения о вызовах. Передача аргументов. Адрес возврата. Фрейм функции в стеке. Возврат значения. Пролог и эпилог функций.

Bryant, O'Hallaron Computer Systems [3].

Тема 6. Указатели и агрегатные типы данных. Размещение массивов в памяти

Работа с памятью и с указателями на уровне ассемблера. Размещение массивов в памяти. Доступ к элементам массива на уровне ассемблера.

Bryant, O'Hallaron Computer Systems [3].

Тема 7. Реализация многомерных и многоуровневых массивов

Размещение многмерных и многоуровневых массивов в памяти. Доступ к элементам матрицы. Отображения с языка С. Производительность при обращении к элементам матрицы. Bryant, O'Hallaron Computer Systems [3]

Тема 8. Размещение структур в памяти.

Организация доступа к полям структуры, выравнивание структур. Отображения с языка С.

Bryant, O'Hallaron Computer Systems [3]

Раздел 2. Система программирования (языка Си)

Тема 9. Двоичный интерфейс приложения, соглашение о вызовах. Рекурсивные функции. Функция main.

Двоичный интерфейс приложения. Организация рекурсии на уровне ассемблера. Размещение программ в памяти. Вызов функции main.

Bryant, O'Hallaron Computer Systems [7]

Тема 10. Процессор х86-64, различные соглашения о вызовах.

64 битные регистры. Различные соглашения о вызовах. Передача аргументов через регистры. Организация вызов функций в разных ОС.

Bryant, O'Hallaron Computer Systems [7]

Тема 11. Организация динамической памяти. Функция malloc.

Реализация функции malloc. Структура кучи. Алгоритмы выделения памяти в куче. Bryant, O'Hallaron Computer Systems [7]

Тема 12. Переполнение буфера, эксплуатация ошибок, механизмы защиты

Объяснения причин уязвимости программ при наличии ошибки переполнения буфера. Эксплуатация ошибок на тестовых программах. Механизмы защиты на уровне компиляторов и ОС (канарейка стека, ASLR, non-executable memory). Технологии безопасной разработки кола.

Bryant, O'Hallaron Computer Systems [9]

Тема 13. Числа с плавающей точкой. Представления для вещественных чисел.

Представление вещественных чисел по стандарту IEEE-754. Обновление необходимости существования стандарта. Основные арифметические операции над двойничным представлением вещественных чисел.

В.И. Юров. Ассемблер [17]

Тема 14. Процессор х87. Архитектура и основные команды.

Регистры процессора x87. Основные команды. Пересылка данных между основным процессором и сопроцессором x87.

В.И. Юров. Ассемблер [17]

Тема 15. Компиляция. Схема работы ассемблера.

Этапы компиляции программ. Промежуточное представление программ.

Оптимизирующие компиляторы. Генерация кода. Распределение регистров.

Bryant, O'Hallaron Computer Systems [9]

Тема 16. Статическая компоновка программ.

Статическая компоновка программ. Разбор формата объектных файлов ELF. Создание статической библиотеки. Положительные и отрицательные стороны статических библиотек.

Bryant, O'Hallaron Computer Systems [7]

Тема 17. Динамические (разделяемые) библиотеки.

Создание динамических библиотек. Размещение динамических библиотек в памяти. Компоновка программ с динамическими библиотеками. Код, не зависящий от адреса (PIC). Bryant, O'Hallaron Computer Systems [7]

Тема 18. Прерывания, процессы, виртуальная память.

Введение в ОС. Организация виртуальной памяти. Процессы, многозадачность.

Разные виды прерываний. Системные вызовы.

Bryant, O'Hallaron Computer Systems [8, 9]

Тема 19. Аппаратура ЭВМ. Физические основы, логические вентили, полусумматор, полный сумматор, АЛУ

Принцип работы транзисторов. Логические вентили (not-and, not-or, and, or, not). Построение логических сдвигов. Схема XOR. Построение полусумматоров, полный сумматор. Мультиплексоры и декодеры. Построение АЛУ.

Bryant, O'Hallaron Computer Systems [4]

A. Tanenbaum. Structured Computer Organization [3]

Тема 20. Статическая память. Защелки.

Физические основы построениея бита памяти. Синхронная SR-защелка. Синхронная D-защелка. Шеститранзисторная ячейка статической двоичной памяти (бит) SRAM. Принцип работы ЦПУ.

Bryant, O'Hallaron Computer Systems [4]

A. Tanenbaum. Structured Computer Organization [3]

Тема 21. Динамическая память.

Интегральные схемы. Закон Мура. Оперативная память. Энергонезависимая память. Bryant, O'Hallaron Computer Systems [4]

A. Tanenbaum. Structured Computer Organization [3]

Тема 22. Иерархия памяти. Кэш память

Пирамидная иерархия памяти. Организация кэш памяти. Прямой кэш. Ассоциативный кэш. Влияние кэш памяти на производительность программ. Разработка дружелюбного к кэшу кода (cache friendly code).

Bryant, O'Hallaron Computer Systems [4]

A. Tanenbaum. Structured Computer Organization [3]

Тема 23. Организация конвейерных вычислений. Архитектуры RISC и CISC

Последовательное вычисление. Использование конвейеров. Простаивание конвейера. Предсказание ветвления. Ограничения при конвейерных вычислений.

Bryant, O'Hallaron Computer Systems [4]

B. Tanenbaum. Structured Computer Organization [3]

2.3.3. Краткое содержание семинарских/практических занятий/лабораторного практикума

Составление программ на языке ассемблера.

Прямые задачи: Написать эквивалентную данному фрагменту на языке Си программу на языке ассемблера (для разных конструкций языка Си).

Обратные задачи: восстановить фрагмент Си кода из данной ассемблер-программы.

Организация вызовов функций с использованием разных соглашений о вызовах.

Создание и использование статических и динамических библиотек.

Работа с данными в формате с плавающей точкой.

Работа в среде SASM.

2.3.4. Материально-техническое обеспечение дисциплины

Компьютеры с доступом к интернету Среда программирования SASM Платформа e-judge

2.4. Модульная структура дисциплины с распределением весов по формам контролей

Формы контролей	(фо теку контр резул юце теку конт	оормы орм) щего ооля в ътиру цей енке щего гроля по глям)	пром чн контј итог оце пром	оормы ежуто ого роля в говой енке ежуто гого гроля	Вес итоговой оценки промежуточн ого контроля в результирую щей оценке промежуточн ых контролей		Вес итоговой оценки промежуточног о контроля в результирующе й оценке промежуточны х контролей (семестровой оценке)	Веса результирующей оценки промежуточных контролей и оценки итогового контроля в результирующей оценке итогового контроля
Вид учебной работы/контроля	MII	NIZ	IVII	N12	M1	M2		
Контрольная работа <i>(при наличии)</i>	0.5	0.5						
Веса результирующих оценок текущих контролей в итоговых оценках промежуточных контролей						0.5		
Веса оценок промежуточных контролей в итоговых оценках промежуточных контролей						0.5		
Вес итоговой оценки 1-го промежуточного контроля в результирующей оценке промежуточных контролей							0.5	
Вес итоговой оценки 2-го промежуточного контроля в результирующей оценке промежуточных контролей							0.5	

Вес результирующей оценки								0.4
промежуточных контролей в								
результирующей оценке								
итогового контроля								
Вес итогового контроля								0.6
(Экзамен/зачет) в								
результирующей оценке								
итогового контроля								
	$\sum =$	$\sum =$	$\sum =$	$\sum =$	$\sum = 1$	$\sum =$	$\sum = 1$	$\Sigma = 1$
	1	1	1	1		1		

3. Теоретический блок

- 3.1. Материалы по теоретической части курса
 - 3.1.1. Учебники
 - 1. Randal E. Brayan, David R. O'Hallaron. Computer Systems: Programmers perspective.Prentice Hall.
 - 2. Рендел Брайант, Давид О'Халларон. Компьютерные системы: Архитектура и программирование. Взгляд программиста. Пер. сангл., СПб.: БХВ, 2005.
 - 3. В.И. Юров Assembler. Учебник для вузов. 2-е изд., СПб.: Питер, 2003.
 - 4. С.В.Зубков. Assembler для DOS, Windows, и Unix. Язык низкого уровня. М., ДМК, 2000г.
 - 5. Таненбаум Э., Остин Т. Архитектура компьютера. 6-е изд.,- СПб.: Питер, 2013.
 - 3.1.2. Учебные пособия
 - 1. Е.А. Кузьменкова, В.С. Махнычев, В.А. Падарян. Семинары по курсу «Архитектура ЭВМ и язык ассемблера»: учебно-методическое пособие. Часть 1. Издание 2-е, дополненное. М., Изд-во МГУ, МАКС Пресс, 2014. 80 с.
 - 2. Е.А. Кузьменкова, В.А. Падарян, М.А. Соловьев Семинары по курсу «.Архитектура ЭВМ и язык ассемблера»: учебно-методическое пособие. Часть 2. М., изд-во МГУ , МАКС Пресс, 2014. 100 с.
 - 3.1.3. Электронные материалы: Презентации лекционного материала
 - 3.1.4. Глоссарий/терминологический словарь;
 - 3.1.5. др. варианты материалов, необходимых для освоения учебной программы дисциплины. Варианты решенных задач

4. Фонды оценочных средств

4.1. Планы практических и семинарских занятий

N	Тема	Дата
1.	Двоичные числа и коды: прямой, обратный, дополнительный код. Примеры преобразования. Сложение кодов. Интервалы значений, которые можно хранить в памяти (8 бит, 16 бит).	
2.	Архитектура IA 32. Основные регистры. Директивы определения данных и константы. Секции data, bss, text. Знакомство с средой SASM. Организация ассемблерной программы.	
3.	Ввод/вывод.Простые арифметические команды (add, sub, mul, imul, div, idiv). Регистр флагов Привидение типов. Примеры отображения Си-программ на язык Ассемблера.	
5.	Битовые и байтовые операции. Логические команды и команды сдвига	
4.	Условное выполнение (if-else, switch). Циклы.	
5.	Указатели и массивы. Представление массивов.	
6.	Прямые и обратные задачи на массивы и указатели.	
7.	Структуры.Правила выравнивание. Переход с Ассемблера на С.	
8.	Функции. Передача аргументов. Рекурсии. Фрэйм функии. соглашения:cdecl, fastcall, stdcall. Нарушение calling convention, Передача структур в функцию. Вызов функций по указателю.	
9.	Задачи с вызовами стандартных библиотечных функций (abs, scanf, prtinf, malloc). Чтения и запись в файлы).	
10.	Числа с плавающей точкой. Представления для вещественных чисел. Процессор x87. Архитектура и основные команды.	

4.2. Материалы по практической части курса

4.2.1. Учебно-методические пособия

- 1. Е.А. Кузьменкова, В.С. Махнычев, В.А. Падарян. Семинары по курсу «Архитектура ЭВМ и язык ассемблера»: учебно-методическое пособие. Часть 1. Издание 2-е, дополненное. М., Изд-во МГУ, МАКС Пресс, 2014. 80 с.
- 2. Е.А. Кузьменкова, В.А. Падарян, М.А. Соловьев Семинары по курсу «.Архитектура ЭВМ и язык ассемблера»: учебно-методическое пособие. Часть 2. М., изд-во МГУ, МАКС Пресс, 2014. 100 с.

4.3. Вопросы и задания для самостоятельной работы студентов

Задачи для самостоятельного выполнения в среде e-judge (15 задач к первому модулю, 19 задач ко второму модулю)

4.4. Образцы вариантов контрольных работ, тестов и/или других форм текущих и промежуточных контролей

Вариант 1. Выписать значение регистра AL в виде десятичного числа (знакового и беззнакового), а также флаги CF, OF, ZF и SF после выполнения следующих инструкций.

задача	решение	Объяснение
MOV AL, 199	al = 138	199 = 11000111
ADD AL, -61	eflags [cf, sf]	-61 = 11000011 (195)
		110001010
		138 = 10001010
MOV AL, -35	al = 5	-35 = 11011101 (221)
SUB AL, 216	eflags [pf]	216 = 11011000
		5 = 000000101
MOV AL, -13	al = 166	-13 = 11110011 (243)
ADD AL, 179	eflags [cf, pf, sf]	179 = 10110011
		166 = 10100110
MOV AL, 64	al = 146	64 = 01000000
ADD AL, 82	eflags [of, sf]	82 = 01010010
		146 = 10010010

Вариант 2. Выписать значение регистра AL в виде десятичного числа, а также значение флага CF после выполнения следующих битовых инструкций.

Команды	Ответ
mov al, 10	al = -128
shl al, 6	CF = 0
mov al, 10	al = 64
shl al, 5	CF = 1
mov al, 10	al = 5
shr al, 1	CF = 0
mov al, 10	al = 2

shr al, 2	CF = 1	
mov al, -10	al = 123	
shr al, 1	CF = 0	
mov al, -10 sal al, 1 mov al, 127 sal al, 1	al = -20 CF = 1 al = -2 CF = 0, OF = 1	
mov al, -10	al = -3	
sar al, 2	CF = 1	
mov al, 10 rol al, 4	al = -96	
mov al, 10	al = 65	
rol al, 5	CF = 1	
mov al, 10 ror al, 1	al = 5	
mov al, 10	al = 64	
rcl al, 5	CF = 1	
mov al, 10	al = 2	
rcr al, 2	CF = 1	

Вариант 3. Прямые задачи.

Перевести фрагмент С- программы на язык Ассемблера:

```
a) static short int a = 10;
    static int b = 20, c;
    c = a + b;
b) unsigned char z = 0xff;
    unsigned short a = 0xff00;
    unsigned int b;
    b = a * z;
c) static int a, b = 1, c = -2, d = 3; ...
    a = b + c * d;
```

```
d) static int a;
      short b = 1;
      int c = -2, d = 3, e = 4;
      a = b - c * d * e;
   e) void cond(int a, int *p) {
            if (p \&\& a > 0) {
            *p += a;
      }
            }
Вариант 4. Обратные задачи. Восстановить Си-код из ассемблер-кода:
   a) section .bss
       a resd 1
      section .data
       b dd 1
       c dw -2
       z dw 5
      section .text
       mov bx, word[z]
       mov ax, word[c]
       imul bx
       mov ecx, dword[b]
       movsx eax, ax
      sub ecx, eax
      mov dword [a], ecx
  b) Восстановить Си-функцию из ассемблер-кода:
      mov eax, dword [ebp + 8]; параметр х
       mov edx, dword [ebp + 12]; параметр у
       cmp eax, -3
      jge l2
      cmp eax, edx
      gle 13
      imul eax, edx
      jmp l4
13:
      add eax, edx
      jmp 14
12:
      cmp eax, 2
      jg 15
      xor eax, edx
```

Вариант 5. Задачи на программирование на языке Ассемблера.

- 1. Вычислить значение выражения: y=a-x+b/c
- 2. Найти ребро прямоугольника, если известны площадь и другое ребро.
- 3. Вычислить площадь треугольника, если даны (x, y) координаты трех вершин.
- 4. Даны две статические переменные а и b размером 2 байта. Требуется регистр EAX заполнить следующим образом: верхние 2 байта должны содержать значение переменной а, а нижние 2 байта значение переменной b, циклически сдвинутое на 5 бит вправо.
- 5. Вычислить значение выражения y = 32 * x x / 8 + x % 16 с использованием команд сдвига.
- 6. Найти самую правую единицу в двоичном представлении числа.
- 7. Подсчитать число символов введенной строки, включая последний символ перевод строки.
- 8. Подсчитать сумму п чисел.
- 9. Вычислить сумму арифметической прогрессии. С клавиатуры задаются: первый член прогрессии, шаг, количество членом прогрессии, которые требуется суммировать.
- 10. В заданном массиве int a[10] найти максимальный и минимальный элементы.
- 11. Дан массив из 100 элементов типа int. Найти сумму элементов массива, превосходящих значение последнего элемента.
- 12. Даны два массива из 100 элементов типа short. Проверить массивы на равенство и напечатать 1 в случае положительного ответа и 0 в противном случае.

4.5. Перечень экзаменационных вопросов

1. Представление целых и вещественных чисел в двоичной форме. Прямой, обратный и дополнительный коды. Формат IEEE-754. Порядок представления байтов в памяти (big and little endian). Размеры типов в языке С. Знаковые и беззнаковые

числа. Приведение типов.

Литература:

- Книга R. Brayan. Computer Systems Programmers perspective, вторая глава.
- Книга Зубков С. В, первая глава
- Книга В.И. Юров: глава 4, глава 17
- 2. Процессор x86, регистры. Формат данных. Пересылка данных (mov). Регистр eflags. Арифметические и логические операции. Сдвиги. Переполнение. Флаги ОF, CF, ZF. Отображение кода из языка С в язык ассемблера и наоборот. Литература:
 - Книга R. Brayan. Computer Systems Programmers perspective: 3.1 3.6
 - Книга В.И. Юров: глава 7, 8, 9
- 3. Флаги OF, CF, ZF, SF. Команды передачи управления. Инструкция jmp и условный переход. Представление операторов условного перехода языка Си на языке ассемблера. Оператор switch.

Литература:

- Книга R. Brayan. Computer Systems Programmers perspective: 3.1 3.6
- Intel reference manual
- Книга В.И. Юров: глава 10
- 4. Организация циклов. Инструкция loop. Представление операторов цикла языка Си в языке ассемблера (do-while, while, for). Инструкция условной пересылки (Conditional Move Instructions)

Литература:

- Книга R. Brayan. Computer Systems Programmers perspective: 3.1 3.6
- Книга В.И. Юров: глава 10
- 5. Представление программы в памяти. Стек и локальные переменные. Расположение глобальных и статических переменных. Организация вызова функций. Передача аргументов, адрес возврата. Фрейм стека. Различные соглашения о вызовах.

Литература:

- Книга R. Brayan. Computer Systems Programmers perspective: 3.7
- Книга Зубков С. В, 5.2, 5.3
- Книга В.И. Юров: глава 15
- 6. Массивы и указатели. Представление одномерных и двумерных массивов. Структуры данных в ассемблере.

Литература:

- Книга R. Brayan. Computer Systems Programmers perspective: 3.1 3.6
- Книга В.И. Юров: глава 13
- 7. Процессор x87. Организация процессора и его регистры. Основные команды процессора x87.

Литература:

• Книга В.И. Юров: Глава 17

8. RISC-V

Литература:

- https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
- https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0.pdf
- 4.6. Образцы экзаменационных билетов

Образец 1

- 1. 1. Процессор x86, регистры. Регистр eflags. Арифметические операции. Флаги OF, CF, ZF. Отображение из C в ассемблер и наоборот.
- 2. 2.Организация памяти. Кеш-память. Реализация кеш-памяти. Локальность кода.
- 3. 3.Задача.

Образец 2

- 4. Прямой, обратный и дополнительный коды. Порядок представления байтов (big and little endian). Знаковые и беззнаковые числа в языке С и Ассемблера. Приведение типов.
- 5. Цифровой логический уровень организации процессоров. Вентили, декодеры и мультиплексоры. Полусумматор и полный сумматор. АЛУ.
- 6. Задача.

4.7. Образцы экзаменационных практических заданий

- 1. Вычислить площадь треугольника, если даны (x, y) координаты трех вершин.
- 2. Вычислить значение выражения y = 32 * x x / 8 + x % 16 с использованием команд сдвига.
- 3. Найти самую правую единицу в двоичном представлении числа.
- 4. Подсчитать число символов введенной строки, включая последний символ перевод строки.

4.8. Банк тестовых заданий для самоконтроля

Кодирование чисел: Представить следующие числа в прямом, обратном и дополнительном коде: 8, 9, -9, -12

	прямой	обратный	дополнительны й
8	00001000	00001000	00001000
9	00001001	00001001	00001001
-9	10001001	11110110	11110111
-12	10001100	11110011	11110100

Система команд: Пересылка данных (mov, movsx, movzx). Определить значение регистра после операций:

mov al, 10

- mov al, 127
- mov bh, 300 // bh = 44, bx = 11264
- mov ax, 0xfffff //ax = 0xffffmov al, 1 // ax = 0xff01, al = 1, ah = 0xff
- mov bx, 45
 movzx ax, bl
- mov bx, -45 // bx = 0xffd3
 movzx ax, bl // ax = 0xd3
- mov bl, -1 // bl = 0xff, bx = 0xff movsx ax, bl // ax = 0xffff

5. Методический блок

5.1. Методика преподавания

Преподавание учебной дисциплины «Архитектура ЭВМ и язык Ассемблера» строится на сочетании лекций, практических занятий и различных форм самостоятельной работы студентов.

На лекциях рассматриваются основные вопросы по темам, составляющим содержание дисциплины, с акцентом на наиболее сложные проблемы.

На практических занятиях делается акцент на проверку теоретических знаний и их применению при решении практических задач и программированию на языке NASM в среде программирования SASM.

Рабочей программой дисциплины предусмотрена самостоятельная работа студентов, включающая работу с литературными и электронными ресурсами, выполнение домашних заданий в среде e-judge, подготовку рефератов.

Промежуточный контроль проводится с использовзнием платформы e-judge.